
t@f&.#, . ...% .-

w-, I
LMJn -82-1055

8 Mlm$
Los Alamos NMonsl LaborStory is operated by Iho Univorsky of California for tho Unhd Ststos Oopartmont Of Energy under contract W-7405 -ENQ-36

LA-UR--82-1055

DE82 014045

TITLE: TWO-DIM~NSIONALSPATIAL-DISCRETI ZATION METHODSON a~ACRANGIAN MESH
2

AUTHOR(S): Thomas R. Hill and Richard R. Paternoster

SUBMITTED TO: Los Alamos/CEA Applied Phycics Conference,
pari~, France, April 19-23, 1982

!lSilVOJilOllOfTHISI?)IIIMFNTISllN[lMllKl

IF! TJ)
Byaccoplanco of!hlssrttcl@, tllepubllohor rW~nlloIthQlth*US Onvornmonl rotalns anon@ xclunlv@, royally -trwllconoolop Ilshorroproduco

th~publlohodlorm of this contrlbutlon, or to allow othws to do Do, for US (lovornmon tourposos

Tho Los Alomoc National Laboratory rcquosls NW !ho publlshw Ida?tlly Ihls wtlcl$ac work p.r!ormod undortho auoplcosoftho US Oopmlmontof Enofgy

ILOSAlammclsLos Alamos National Laborator
Los Alamos,New Mexico 8754 i!$

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.

For additional information or comments, contact: 

Library Without Walls Project 
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544 
Phone: (505)667-4448 
E-mail: lwwp@lanl.gov



TWO-DIMENSIONALSPATIAL-DISCRETIZATION
METHODSON A LAGRANGIANMESH

Thomas R. Hill and Richard R. Paternoster
Los Alamos National Laboratory
Los Alamos, New Mexico, U.S.A.

Methods for efficiently solvine the two-dimensional multieroup transport
equation for orthogonal (xjy) or (r)z) geometries are generally well-developed.
The extension to reeular triuneular meshes in (x,y) and (r,z) geometries has
been done. However, some complex geometries cannot be accurately described
with thtwe methods. Furthermore, it is often desirable to couple neutronics
with hydrodynamics calculations. It is desirable to perform the neutronics
calculation directly on a distorted LJgran8ian mesh, rather than mappine the
material properties onto ?n ortk?~onal mesh. This paper will describe some
of the Los Alamos work on solving che Lransport equation on an arbitrary
La8rangian mesh, with emphasis on the spatial differencing schemcn ualed.

The ●neular variable is treated by the standard discrete-ordinates approxi-
mation, using the diamor.d-differe,~ce approximation for curved geometry,
Before the calculation is begun, a iarge (packed) orderine ●rray of a,tze:
(n~ber of spatial mesh cell x number of discrete-ordinates direction) is
computed to specify tbe order of sweepine the mesh cells for ●ach direction.
This can he done in a very eificient fashion for near-spherical meshes.

By writing a conservation equation for ●ach triangular or quadrilateral
mesh cell, ●nd using additional dfamond-difference-like relationships, de-
pendine upon the number of sides visible, an equation for the cell-centered
●ngular flux can be derived. This ncheme suffers from the same difficulties
●8 the standard diamond difference in orthogonal geometries, in ●ddition to
other deficiencies unique to Lagran8ian meshes. Schemes for fix-ups of
negative fluxes ●nd boomerangs will be desctibed. Two temporary triangulc,r
aubzoning schemes will be outlined,
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TWO-DIMENSIONALSPATIAL DISCRETIZATION
METHODSON A LAGRANGIANMESH

INTRODUCTION

Because of the ability to model complex geometries and the occasional interest
in couplin8 neutronics to hydrodynamics calculations, such as in reactor
safety problems, the solution of the neutron tranaport equation on an arbitrary
Lagrangian mesh is sometimes desired,

In the past, this was most often done by mapping the material properties onto
an orthogon~l mesh and performing the neutronics calculation with those well”
developed methods. l’z Because of the e.;penae of this mappin8 and a correspond-
ing reduction in accuracy, an effort was undertaken at Los Alamos for a direct
solution of the discrece-ordinat.es transport ●quation on La8rangian meshes.
Preceedin8 and paralleling this effort was the work at Lem~il by Mordant.3”t
In describin8 the Los Alamos work in this paper, emphasis will be placed on
the differences between the two approaches. primarily in the spatial dif-
ferencing scheme.

The Loa Alamos method ia based upon the constraints:

1, The method must be ●ble to solve lar8e meshes (> 10 000
mesh cells), so that a scheme efficient in core storage
is required, and

2. The method must be able to do time dependent problems, so
that a computationa~-efficient anJ fast scheme is required.—.

These two restrictions resulted in ● method somewhat simpler, and certainly
far less elegant, than that of Mordant.

TPANSPC)RTEQUATION

The ●n81c ●nd energy variubles of the two-dimensional transport equation in
(x,y) or (r,z) 8eometry are treated by the standard discrete ordinates and
multi~~oup ●pproximation,z includin8 the truncated expansion of the scattering
function in spherical harmonics.

Usin8 the utandard nomenclature of TWOTRAN,2the conservation equation for the
single Lagrangian mesh cell shown in Fig. 1, for discrete-ordinates direction
0 = (IJm,qm), can be writtenm

+(JV+=SV

2

(1)



where

fi = I pby - @x

I

(X,y) =

I ;(@z - qAr) (r, z)

flow area on i’th face of ❑esh cell, with

fi = I>0for outflowl ,

< 0 for inflow I

I
~~dxdy in (x,y)

v = mesh cell volume = IfJrdrdz in (r, z) ‘

A= mesh c~ll area =JJdrclz in ~r,z) , and

s = mesh cell source, incl~ding scattering and fission.

Equation (1) may ●asily be applied to triangles by setting the appropriate
f o.=

i

The curvature coefficients, ad%, Batisfy the standard recursion relationz

in (r)z) geometry, and are zero for (x)y) geometry, with the notation

a=a
m m-+$ + ‘m-#”

The step ●pproximation in angle2 ]ti used in (r,z) geometry

for the first angle on each q ltve].

The diamond-difference ●pproximation ],n t~n~~le ia used

so that Eq, (1) can be written

SV + Inflowu + $ @m+# - ala-+ ) %$m
d= — —.-—. ——.,

ti + OutflOws + 2 ~- a
m m++

or for the first an~le on an rl-level

*=
Sv + Iriflowa

(JII + outflows + a+ ~

m

(2b)



SPATIAL DIFFERENCING

The conservation equation scheme of Eq. (2) is based on mesh-cell edge fluxes
(as opposed to a corner flux scheme). The diamond difference scheme., used so
successfully in orthogonal geometries, can easily be generalized to these
nonorthogonal Lagrangian meshes.

The number of known and unknown angulaz fluxes in Eq. (1) depends upon the
the orientation of the mesh cell with respect tc the discrete ordinate
direction. For a quadrilateral cell withN aides visible (N = 1,2, or 3),
there are 5-N unknown fluxes so that 5-N-1 auxiliary diamond-difference
like equations must be dSSU~t?d to supplement the conservation Eq. (l).
These supplemerital equations and the resultant cell-center flux equation
for the five possible cases are shown in Fig. 2.

Because of the sign on the flow areas (- for inflow, + for outflow), the
equations for the cell-center fluxes in Fig. 2 are seen to be positive,
provided the sources are positive. These diamond-difference like equations
suffer the same defects of those in orthogonal geometries; namely> that the
diamond difference ex~rapolations can (and do) yie~d negative fluxes. The
appropriate equations for a set-to-zero flux fixup are detailed in Fig. 3.

Other defects exist for this diamond-difference scheme. As one side of a
quadrilateral is squeezed down to zero, the difference equation c!ees not go
over to the ●quation for the corresponding t.rianule.

Moreover, a. the orientation of a mesh cell is changed from one oide visible
to two sides visjble to three Bides visible, the difference equations are not
continuous from onc orientation to the other. Although this is primariJy-
an aesthetic objection, it m~ only mean that q~antitles do not converge
monotonically with increasing S order. In time-dependent problem, this may
introduce nonphysical jumps in !he temporal behavior of the flux in a cell.

Although neither of these two defects ●xist for the step scheme, efforts to
correct them for the diamond-difference scheme have not been successful.

For problems that are picked up from L08rangian hydrodynamics the meshes
occasionally contain boomerangs and bowties. Since boomerangs are mesh
cells with reentrant bounclaries, a rigorous solution must reflect the solution
in the adjacent cells, destroying the expl?cir.nesu of the scheme. Several
ad hoc tixups are shown in Fig. 4. Generally, the number of boomerangs in
n mesh ●re few, so that a crude treatment of these cells haa little effect on
the overall solution. No satisfactory treatment for bowties has been devised
yet.

ALTERNATIVEDIFFERENCE SCHEMES

The step ●pproximation in the lateral direction for one-side visible quadri-
laterals (se? Fi8. 2) is obviously ● crude ●pproximation. In order to get the
proper slope to the cell flux distr~bution in this lateral direction, a scheme
for this one-aide visible case, bafied on Carlson’~ method of characteristics,
waa examined. The lateral cell ed8e fluxes ●re distributed based on the
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distance ‘~f the cell edge midpoints from a plane perpendicular to the beam
through the center of the cell, as diagrmmed in Fig. 5. However, because of
its complicated nature and the imited improvements in accuracy it offerred,
this scheme was abandoned.

After taking statistics on a number of spherical-like meshes, it was noted
that the vast majority of the cell solutions were for the two-side visible
case, ran~iug from 95% for exactly spherical meshes to a low of 85% for
one highly-distorted mesh. The remaining cells solutions were roughly evenly
distributed between the other four cases (one side ant three side visible
quadrilaterals, and one and two side visible triangles). Thus, improvements
in these four latter schemes will probably only produce marginal improvements
in overall results.

Two more accurate diamond difference-like have been examined. One is a
temporary triangular zoning scheme in which the quadrilateral is arbitrarily
divided into two trinngles, as outlined in Fig. 6 for a two-side visible
case. The other was a temporary triangular fine zoning scheme in w~hich the
quadrilateral is divided into four triangles, as outlined in Fig. 7.

Although both of these schemes yielded some improvements in accuracy, it was
felt the improvement did not justify the additional compute costs. The only
quantity saved between iterations was the cell-centered flux, so that the
new scattering and fission sources nre only the cell-averaged values., Thus ,
these crudely-approximated sources degrade the improved accuracy resulting
from a more accurate difference schc’me.

THE LaPIF.DOCCODE

The LaMEDOC(Lagrangian &sh Qibcretw Ordinates Transport Qode) has been
developed nt ~c Alamos to SOIVR the d~screte-ordinatca transpor~ equation
on an arbit.r,lry Lmgrangian mesh. Iluch of the st-ucture is the same as in
the TWOTRM code.z LaMEDOCis only ~ methods testing code, with much un-
optimized coclin8, and not a usable production code in any sense,

In addition to the sputial differencing scheme, the second major problc’m not
foun~ in orthogonal-mesh codes is how to sweep the Lagrangian mesh. For J

given discret(s-ordinate directicn, the order of solving the mesh cells in not,
~ priori, known. A number of iterative schemes for sweepin8 the mesh were
exemined. Though highly optimized, they were found to be not competitive
(except for pure ebsorbing systems) with an explicit schemw of sweeping the
mesh.

Althou8h bein8 computationally efficient, an explicit ●weepin8 scheme requires
a considerable core stora8e overhead, namely, an ordering ●rray of the s,tze
of one ●n~ular flux ●rr8y. This orderin8 array specifies the order in which
the spatiel mech is to be swept for each discrete ordinate direction. It iS
computed at the start of the problem by testin8 the si8n of the flows betwesn
each mesh cell until ● (non-unique) Ord@rinE is ●btained. By assuming a
banded structure, ●s shown in F~u.
efficiently. For time-independent
orderin8 ●rray is negligible, For

8, this ~rderin8 array ca; be comp~ted quite
problems, the overhead for computing this
time-dependent problems, this overhead
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becomes significant. However, the ordering array from the previous time-step
can be used to compute the orderng array for the present time step fairly
efficiently.

LaHIHIOCuses the traditional three level of iterations: inner iterations on
the within-group scatter source, outer iterations orI the fission source for
eigenvalue A, and alpha iterations for the time-absorption eigenvalue (Y. Both
the inner and outer iterations are accelerated by a material mesh variant of
the standard coarse-mesh rebalance.;2

The a iterations are also accelerated with a group-collapsed material mesh
rebalance.6 The a iterations on the multigroup transport equation can be
written as

(3)

where L is the leakage operator, X a diagonal matrix of macroscopic total cross
sections, V-l is a diagocal matrix of inverse group speeds, S and F are the
scattering and fission operators, and A the intermediate eigenvalue. The sollJ-
tion of Eq. (3) for the eigenvalue a, with A = 1, is sought. Multiplying the
fluxes ~ in Eq. (3) by material-mesh dependent rebalance factors, fk, and
integrating over al! angles and energy groups and mesh cells in material-mesh
zone k yields a matrix equation for the eigenvalue a and eigenvector of re-
balance factors.

‘FL + AB - FS]f=-aFVf , (4)

where AB, FS, and FV are diagonal matrices

ABk =JdVJdEXa$ ,
k

M =$dVJdEvZfh ,
kk

●nd FL is ● full material-mesh flow matrix.

The aigenvalue spectrum of Eq. (4) ranges from the d~sired lar8e#tf positive
ei8envalue to ne8ativc infinity. Thus, the simple power iterstio~~ used for
the outer material-mesh rebalance will not produce the desired eigenvalue.
The inverse power iteration scheme has been found to be effective in solving
Eq. (4).
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Various convergence tests are used on the different levels of iterations in
LaMEDOC. During the early iterations when a is not accurately known, it makes
little sense to converge the iterations very tightly. Consequently, Ls?fEDOC
uses a variable convergence precision scheme in which the various lev~ls of
iteration are converged to a precision 8ivea by the ad hoc receipe:

= 10-2 (1 - A) + A &final ~&

where E
final is the de~)ired, final convergence precision, a user-upecified

parameter. For some problems with much scattering, this scheme can cause the
u eigenvalue iterations to diverge, but works well for highly-absorbing systems.

Occasionally, it is desired to compute a eigenvalues for subcritical systems,
LMEDOC contains an algorithm 7 to obtain these very difficult
succeeds when other tranaport codes fail.

NUMERICALRESULTS

LaMElX3Chas been used successfully on a variety of problems.

●igenvalues that

C@od agreement
has been obtained with results from the ONETRANSand TWOTRANcodes for problems
that can be modeled exactly on those codes. The defects described above in
the spatial differencing have not appeared to be a serious difficulty in any
problem yet computed. Hany problems make frequent use of the negative-flux
fixup scheme. If the cell-centered fluxes are the only quantity examined,
the negative fluxes and the spntial oscillations of the cell-edge fluxes ● re
not evident.

For steady-state problems when integral quantities are desired, such ● s ●igen-
vblues, absorption rates, and leaka8es, the crudeness of the diamond-difference
schzme ●ppears to be no impediment to its use. In time dependent. problems when
iocalized sources may be present and large spatial flux 8radients may ●xist,
the diamond-difference scheme m- prove to be inadequate.

Figure 9 shows ● aFherical problem consisting of a pure 2SSU sphere, sur-
rounded by ● beryili’um reflector. The results from LaMEDOCfor this problem
●re shown in Table 1 for ● series of spatial. meshes. Even for the coarse
spatial mesh b, the eigenvalue a is in error by less than 1%.

The important parameter in comparing the computing efficiency of various
spatial differencing schemes ia

‘r=
Total CPU tim~

?# of groups) (4 of mash cells) (# cf directions) (# of inners) “

For this problem, LMEDOC appears to have ● T of ●bout 1S ps. This quantity
is, of course, ● strong function of cadin8 efficiency, compiler optimizatiaa,
●nd the computing facilities software.
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Table L LaMEDOC Problem A Results

6 Groups, S6 Quadrature, c = 10-4

CDC 7600
Mesh Total CPU Time Tb an

Mesh Ce11s I nners s us Pen /sh

1(3 465 16.26 15.1 2.1123
: 64 49’7 67.64. 1.4.8 0.8461
c 256 537 302.19 15.3 0.8544
d 1024 545 .1569.86 19.5 ~+8552

a ONETRAN a (SI& 20C mesh cells) = 0.8565
bT = CDC 7600 CPU Time per group per mesh ce 11

per clirec tion per inner itleratiOn
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Two Sides Visible : *I , +2 known

Three Sides Visible : WI , *2 , @ known

\\

*4 w - (f ,-f,w, - (f2-f4)v2 - (f3-f4)~3 + Aam9~-1/@~

*8 . +=
4f4 + UV + 2Aam+l~wm.

FIGURE 2a. Quadrilateral Diamond Difference——. .. —- —.



One Side Visible : @l known

$FW3 = (311-T#,)/2

W - (fl–fa/2–f2/2)~, + Aamvm-112/wrn
v= ——

3f#2 + 3fa/2 + OV + 2Aa~.1~2/W~

FIGURE 2b. Triangle Diamond Difference——.. . .—



One Side Visible : @l known
94

Suppose I#a < 0

Set *2=*4. = ~ and *FO

w - f #1 + ACXmI&112/Wm
‘= f2+f4 + CTV + 2Aam+l/z/wm

/’
c)

Two Sides Visible : ?#I , *2 known

Three

v=

Suppose *4 < *J < 0

Set ~,=0 and 3&21#-~,

Sv - f2~z-(f ~-f~)~l + Anm~m.112/wm

2f’. + UV + 2Aam+,/S/wm

~:~eg Visible : W , % , *3 known
Suppose *4 < 0

set **=@

Sv - fl~l-f’a~z-f’a~s+ Aam%m-ldwm——. —
UV -t 2Aam+1/s/wm

FIGURE 3a. Quadrilateral Flux Fixup.-. —



one Side Visible : +1 known

7P=‘v - f#t+Aam~m.1j2/wm

UV + 2Acxm+1/2/wm

‘vJv Two Sides Visible : ?)i , W2 known
suppose’ *3 < 0

VI *8 set *&o

- f l~i-fz~g + Aam9m-i/a/wm

r

‘v” ‘v UV + 2A~m+l/~/wm

FIGURE 3b. Triangle Flux Fixup-.—
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PROBLEM:

For this orientation , only 1 side vsbl
Logic thinks 2 sides Vsbl (wi and Q3)

+4 Three supplement al equations needed

\ ‘w

2. Use Step Approximation
*e$F’lp4 = +

- f #J1 + Aa~@rn-l /wm
$ “ ~f3+f+ + ~~ + J’”=

f~f,>o ,fa<o Denominator can vanish

+: 3. Temporary Triangulation
‘bv’

b

*1 a Solve Aa (1 side vsbl) for ~~ . ‘k , vi

’43 Solve Ab (2 sides Vsbl) for @b t V4
% by assuming lb%

%t @ = ($.va+%vb)lv

FIGURE 4. BOOMERANG CELL F] XUPS



Instead of step scheme in lateral direction

*4+2 = @

Relate +2 , ~4 to ~ based
on dz and d4

FIGURE 5. ONE SIDE VISIBLE ALTERNAT1 VE



Split quadrilateral into Aa and Ab

Solve Aa (1 side vsbl) for ~m , *3 , yi

Sc)iVe Ab (2 sides vsbl) for ~~ , ~4

Set * = \V,+.+V~+~)/V

.

FIGURE 6. Temporary Tr i~ngular Zoning
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Split quadrilateral into Aa , Ab , Ac , Ad

Solve Aa (1 side vsbl) for v~ , ~,~ , IJ’.c

Solve Ab (2 sides vsbl) for ~b , VU

Solve Ac (1 side vsbl) for w. , +3 , Wm

Solve Ad (2 sides vsblj for ~d , ~t

set q = (vaqa+v,$,+vcqc+ v,q,)/v

FIGURE 7, Temporary Fine Triangular Zoning
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FIGURE 8. BAND STRUCTURE FOR ORD~Ill NG ARRAY



I
Zone 1 :

Zone 2 :

Core
17.46 cm. radius
Pure *U
P= 18.X gmlcmfi

Reflector
6.00 cm. thick
Pure Be
P= 1.85 gm~’cm3

6 group Hansen-Roach Cross Sections

S6 Quadrature

Mesh : a.
b.
c,
d.
eb

t PO Scatter

[

4 angular intervals,
8,4+4)
16 , 8+8 )
32 , 16+16

(64 , 32+32 I

2 +2

. .. .

radial intervals)


